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Abstract

In TREC 2007, LanguageComputerCorporationex-
ploredhow a new, semantically-richframework for in-
formation retrieval could be usedto boostthe overall
performanceof the answerextraction and answerse-
lection componentsfeaturedin its CHAUCER-2 auto-
matic question-answering(Q/A) system. By replac-
ing thetraditionalkeyword-basedretrieval systemused
in (?) with a new indexing andretrieval enginecapable
of retrieving documentsor passagesbasedon thedistri-
bution of namedentitiesor semanticdependencies,we
wereableto dramaticallyenhanceCHAUCER-2'sover-
all accuracy, while signi�cantly reducingthenumberof
of candidateanswersthat were consideredby its An-
swerRankingandAnswerValidationmodules.

1. Intr oduction
In TREC 2007,LanguageComputerCorporationexplored
how anew, semantically-richframework for informationre-
trieval couldbeusedto boosttheoverallperformanceof the
answerextractionandanswerselectioncomponentsfeatured
in its CHAUCER-2 automaticquestion-answering(Q/A) sys-
tem.

Unlike the keyword-basedretrieval systemstraditionally
usedby Q/A systems,CHAUCER-2 leveragesa novel in-
dexing andretrieval enginewhich makesit possibleto re-
trieve documentsor passagesusing queriesthat look for
instancesof (1) entity typesrecognizedby a namedentity
recognition(NER) system,(2) semanticdependenciesiden-
ti�ed by PropBank-or NomBank-basedsemanticparsers,
(3) semanticframes(or frame-denotingelements)recog-
nizedby a FrameNetparser, or even(4) thenormalizedver-
sionsof temporalor spatialexpressions.Supportfor these
new typesof queriesdramaticallyenhancedtheperformance
of CHAUCER-2's DocumentandPassageRetrieval compo-
nentswhile signi�cantly reducingthe numberof candidate
answersthat had to be consideredby its AnswerRanking
andAnswerValidationmodules.

CHAUCER-2 alsoleveragesa variantof theBindingsEn-
gine(BE) �rst proposedby (?; ?) in orderto retrieve of all
of the text snippetsmatchedby a pattern-based(or variabi-
lized) querywithout having to retrieve documentsusinga
keyword-basedquery. We foundthatuseof this framework
greatlybothenhancedtheef�ciency andtherecallof tradi-

tional pattern-basedapproachesto Q/A andallowedfor the
developmentof new librariesof precisepatternsfor speci�c
questiontypesaskedin previousTRECQA evaluations.

Finally, CHAUCER-2 incorporatesanew, multi-tieredAn-
swerTypeDetection(ATD) modulewhichreducesthenum-
ber of expectedanswertypes (EATs) consideredby the
systemfor factoidor list questions,while maintainingthe
samehighlevelsof precisionexhibitedby previoussystems.
SinceLCC's previousATD systemsoften identi�ed a large
numberof spuriousanswertypesalongwith the mostcor-
rectanswertype for a question,we developeda new back-
off mechanismwhich forcestheQ/A systemto considerthe
mostspeci�c EATsidenti�ed for aquestion�rst; other, more
generalEATswerethenincludedassearchtermsonly when
insuf�cient evidencewasretrieved usingthe morespeci�c
EAT.

Taken together, we believe thesethreeenhancementsto
CHAUCER-2's core retrieval capabilitiesallowed us to de-
velop a battery of high-precision,low-recall Answer Re-
trieval strategies which could be run independentlyof the
traditionalentity-basedQ/A strategiescurrentlybeingused
by LCC's FERRET (?) and CHAUCER-1 (?) question-
answeringsystems.In orderto maximizethevalueof these
individual strategies,we re-castthe new CHAUCER-2 Q/A
pipelinedevelopedfor theTREC2007evaluationsasa cas-
cadeof end-to-endQ/A systemswhichweretaskedwith an-
sweringquestionsin orderof their expectedprecisionfor a
particularquestiontype.

The restof this paperis organizedin the following way.
Section2 presentsa brief overview of the architectureof
the CHAUCER-2 system. Section 3 presentsdetails of
CHAUCER-2's core factoid Q/As system,while Section4
describesthesystemfor answeringlist questions,andSec-
tion 5 describesthetechniquesusedto answer“other” ques-
tions. Resultsfrom this year's of�cial evaluationare dis-
cussedin Section6, while Section7 summarizesour con-
clusions.

2. The CHAUCER-2 Question-Answering
System

This sectiondescribesthe architectureof the CHAUCER-2
question-answeringsystemusedto answerfactoidand list
questionsfor the TREC 2007 QA Track Main Task. The
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Figure1: Architectureof theCHAUCER-2 Question-AnsweringSystem

architectureof CHAUCER-2 is presentedin Figure1.

TargetProcessing
Targetsin CHAUCER-2 are initially submittedto a Target
TypeClassi�cationmodulewhichusesaversionof theMax-
imum Entropy-basedclassi�er introducedin (?) in order
to categorize seriestargets into one of a set of semantic
categoriestaken from the large ontologyof semantictypes
recognizedby LCC's CICEROL ITE namedentity recogni-
tion system. As with our TREC 2006 work, targetswere
classi�ed into oneof six target types,including: (1) PEO-
PLE (e.g. Warren Moon), (2) ORGANIZATIONS (Ameri-
can EnterpriseInstitute), (3) LOCATIONS (AmazonRiver),
(4) EVENTS (1991 eruption of Mount Pinatubo), (5) AU-
THORED WORK (TheDaily Show), or (6) GENERIC NOUNS
(avocados).

Classi�ed targetswerethensentto a Discoveryof Essen-
tial Informationmodulewhich leveragedsetsof event, at-
tribute,andrelationshipextractorscreatedprior to theTREC
2007evaluationsfor eachindividualtargettypecategoryus-
ing LCC'sCICEROCUSTOM open-domain,customizablein-
formation extraction system. In addition to thesesetsof
customextractors, CHAUCER-2 also usedsetsof heuris-
tics in order to extract information relatedto targetsfrom
anumberof “authoritativesources”availableon theWWW,
including imdb.com,nndb.com,iplpotus.com,s9.com, and
wikipedia.org. Onceeachof thesefour extractionstrategies
wererun for an individual target,outputwasthencastin a
structuredform andstoredin a database(referredto asthe
FactoidDatabase).

In order to ensurethat the Factoid Databasecontained
a minimum of contradictoryand/orredundantinformation,
all new informationaddedto the databasewas�rst sentto
a ContentValidation module,which followed (?) in using
theoutputof systemsfor recognizingtextual entailment(?)
and textual contradiction(?) in order to determinewhen

newly-discoveredfactscould be either inferred from – or
weredirectlycontradictedby – knowledgealreadystoredin
thedatabase.

OncetheFactoidDatabasewaspopulatedfor eachtarget,
a selectsetdatabase�elds werethensentto a QUAB Gen-
eration modulein orderto generatesetsof question-answer
pairs which could be usedby CHAUCER-2's other down-
streamAnswerSelectionandAnswerValidationmodules.

QuestionProcessing
Following Target Processing, eachquestionin a serieswas
thensentto a seriesof QuestionProcessingmoduleswhich
annotatedindividual questionswith the lexico-semanticin-
formationneededto generatequeriesfor eachof theindivid-
ualAnswerRetrieval strategiesemployedby CHAUCER-2.

As with our TREC2006system,questionswereinitially
sent to a QuestionAnnotation module which (1) identi-
�ed token andcollocationboundaries,performed(2) part-
of-speechtaggingand (3) namedentity annotation(using
LCC's CICEROL ITE namedentity recognitionsystem),and
(4) resolved instancesof pronominaland nominal coref-
erence(using the knowledge-lean,heuristicapproach�rst
introducedin (?)). Questionswere thensentto a Seman-
tic Parsingmodule,which identi�ed semanticdependencies
using LCC's own PropBank-,NomBank-,and FrameNet-
basedsemanticparsers.

Factoidandlist questionswerethensentto anew Answer
TypeDetectionmodulewhich followed (?) and(?) in us-
ing a multiple MaximumEntropy-basedclassi�ersin order
to identify theexpectedanswertype (EAT) of the question
from LCC'sanswertypehierarchy.

Onceannotationand answertype detectionwere com-
plete, CHAUCER-2 sentquestionsto a QueryFormulation
moduleresponsiblefor (1) extractingkeywordsandphrases,
(2) identifyingsynonymoustermsthatcouldbeusedto aug-
mentaquery, and(3) transformingquestionsinto thepartic-



ular kinds of queriesrequiredby eachof the system's An-
swerRetrieval strategies.

DocumentPreprocessingand Retrieval

CHAUCER-2 employed the samedocumentpreprocessing
framework introducedin (?). As with our TREC2006sub-
mission,we preprocessedthe AQUAINT corpuswith four
typesof information.First,we usedanin-houseimplemen-
tationof theCollins parserto provide a full syntacticparse
of every documentin the AQUAINT-2 corpus;documents
in the larger (and“noisier”) BLOG-06 corpuswereparsed
usingan in-housechunkparser. Second,we usedthreedif-
ferentsemanticparsersin orderto identify semanticdepen-
denciesimposedby bothverbalandnominalizedpredicates.
In additionto LCC's PropBankandNomBankparsers,we
alsousedLCC's FrameNet-basedsemanticparserto iden-
tify instancesFrameNetframesin naturallanguagetexts; a
separaterole classi�er wasusedto identify rolesassociated
eachFrameNetframe.1 Third, we usedLCC's CICERO-
L ITE namedentity recognitionsystemin order to classify
more than 300 different typesof namesfound in the cor-
pus. We alsousedmore than500 lexiconsandgazetteers
derivedfrom web-basedresourcesin orderto tagadditional
nametypesnot coveredby CICEROL ITE. Finally, we used
LCC's PINPOINT temporalnormalizationsystem(?) in or-
der to map temporalexpressionsfound in documentsto a
standardized(ISO8601)format.

Following annotation,we indexed the AQUAINT-2 and
BLOG-06corporausingacustomizedversionof theLucene
informationretrieval engine.In additionto retrieving docu-
ments(andpassages)basedon literal stringsandstemmed
words,CHAUCER-2 wasablealsoretrievedocumentsbased
on a wide rangeof semanticannotationsmadeavailableby
LCC's annotationcomponents,including (1) entity types
from LCC's CICEROL ITE, (2) predicate-argumentrelation-
shipsfrom LCC's PropBankandNomBankparsers,(3) se-
mantic frames,frame roles, and frame-denotingelements
recognizedby LCC's FrameNetparser, or (4) any of the
events,attributes,or relationsextractedby LCC's CICERO-
CUSTOM.

Answer Retrieval and Extraction

CHAUCER-2 leveragesa cascadeof threeseparatefactoid
AnswerRetrieval andExtractionstrategiesin orderto iden-
tify thebestanswerto eachquestionin a series.Strategies
developedfor this year's TREC include: (1) a Structured
Datastrategy whichidenti�es answersfrom theinformation
storedin theFactoidDatabase, (2) a Pattern-basedstrategy
which leveragesa variantof theBindingsEngine(BE) �rst
proposedby (?; ?) in orderto retrieve all of the text snip-
petsmatchedby a pattern-basedquery, and(3) a traditional
Entity-basedstrategy identi�es candidateanswersbasedon
the distribution of entity typesassociatedwith an expected

1TheAQUAINT-2corpuswasprocessedusingsemanticparsers
which had beenpreviously trained on data that had beenfully
parsed;documentsin the BLOG-06 corpuswereprocessedusing
parsersthathadbeentrainedon theoutputof achunkparser.

answertype. (Detailsof eachof thesethreestrategiesare
presentedin Section3.)

Although previous versionsof CHAUCER (?; ?) have
soughtto identify likely candidateanswersby combining
the output of multiple Q/A strategies, CHAUCER-2 con-
sidersanswersreturnedby its four Q/A enginesin a �x ed
order. If no answersare returnedby the Structured Data
strategy, thenquestionsaresentto theNeighborhood-based
strategy; likewise, if no answersabove a �x ed con�dence
thresholdarereturnedby theNeighborhood-basedstrategy,
CHAUCER-2 defaults to using the Entity-basedstrategy in
orderto �nd answers.

Answer Validation

As with our TREC2006submission,CHAUCER-2 employs
a AnswerSelectionandValidation modulein orderto iden-
tify thebestanswerwhenmultiplecandidateanswersarere-
turnedby one(or more)AnswerExtractionstrategies. Fol-
lowing AnswerExtraction, the top � ve candidateanswers
identi�ed by eachstrategy arethensentto a CandidateAn-
swerRe-rankingmodulewhich usesa Maximum Entropy-
basedre-ranker (basedon (?) in order to provide a single
ranked list of candidateanswersfor a particularquestion.
The re-ranked list of answerswerethensentto a �nal An-
swerSelectionmodulewhich usesthe state-of-the-arttex-
tual entailmentsystemdescribedin (?) in orderto identify
thesingleanswerpassagewhosemeaningis mostlikely to
beentailedby themeaningof theoriginalquestion.

3. Answering Factoid Questions
In this section,we describetheCHAUCER-2 systemfor an-
sweringfactoidquestions.

QuestionProcessing

This section describeshow questionswere processedin
CHAUCER-2.

Keyword Expansion As with theTREC2006versionof
CHAUCER, keywords extractedfrom eachquestionwere
processedby a Keyword Expansionmodule that was de-
signed to identify additional synonymous keywords that
could be usedto augmentthe query CHAUCER-2 usedto
retrieve documents. This moduleuseda set of heuristics
in orderto appendsynonyms andalternatekeywordsfrom
a databaseof similar termsdevelopedby LCC for previous
TRECQA evaluations.

QuestionCoreference We incorporateda heuristic-based
QuestionCoreferencemodulein order to resolve referring
expressionsfoundin thequestionseriesto antecedentsmen-
tioned in previous questionsor in the target description.
First, we usedheuristicsfor performingnamealiasingand
nominal coreferencefrom CICEROL ITE in order to iden-
tify the full referentfor eachpartial namementionfound
in the questionseries.Next, we constructedan antecedent
list from all of thenamedentitiesthatoccurredin theques-
tion seriesprior to thecurrentquestion.Eachpotentialan-
tecedentandreferringexpressionfound in the serieswere



then annotatedwith nameclass,gender, and numberin-
formationavailable from CICEROL ITE. We thenusedthe
HobbsAlgorithm (Hobbs1978)in orderto matchreferring
expressionsto candidateantecedents.Whenno compatible
antecedentcould be identi�ed from the antecedentlist, we
madeno furtherattemptto resolve thereferringexpression
foundin thequestion.

Answer Type Detection CHAUCER-2 follows recent
work in AnswerType Detection(?; ?; ?) (ATD) in using
a multi-tieredclassi�cation approachto the recognitionof
the ExpectedAnswer Type (EAT) of both factoid and list
questions.Underourcurrentapproach,weusea three-stage
approachto identifying theexpectedanswertypeof a ques-
tion. First, questionsaresubmittedto a coarse type ATD
classi�er which usesan variantof the Maximum Entropy-
basedclassi�er �rst introducedin (?) in orderto associate
eachquestionwith one of a set of 11 coarsetypes. (The
completelist of coarsetypesthatwereusedin TREC2007
arelisted in Table1.) Second,questionsof certainselected
answertypesare submittedto a second,expandedcoarse
typeclassi�er which identi�es a secondcoarse-grainedan-
swertypewhich canbeusedto furtherdescribethetypeof
answersoughtby thequestion.(Thesetof expandedcoarse
typeswe consideredin our TREC2007work arepresented
in Table2.) Finally, questionsof eachcoarsetype (or sub-
type)arethensubmittedto a third setof �ne typeclassi�ers
which mapeachquestionto oneof the setof �ne answer
typesassociatedwith eachcoarsetype. In our work, we
have useda hierarchyof over275different�ne entity types
derivablefrom themorethan300differententity typesrec-
ognizedby LCC's CICEROL ITE. (Table3 presentsasample
of someof the�ne typesthatwereusedin CHAUCER-2.)

CoarseType Example(s)

HUMAN GeorgeW. Bush,Texans,StateDepartment

LOCATION Tajikistan,GrandCanyon,SearsTower

ABBREVIATION AARP, Dr.

WORK Hamlet,Guernica

NUMERIC 55mph,£124

TEMPORAL 1945,8 yearsago

TITLE Physician,Israeli

CONTACT-INFO andy@languagecomputer.com

OTHER-ENTITY HurricaneAndrew, Budweiser

OTHER-VALUE purple,guilty

COMPLEX ±

Table1: CoarseAnswerTypesusedby CHAUCER-2

CoarseType ExpandedCoarseType Example(s)

INDIVIDUAL Bill Clinton,Paul McStay
HUMAN GROUP journalists,Floridians

ORGANIZATION FBI, TheWhiteStripes

FACILITY MacDill AFB, Hoover Dam
LOCATION GPE India,Los Angeles

PHYSICAL LOCATION GreatPlains,BlueNile

Table2: Breakdown of HUMAN andLOCATION CoarseAn-
swerTypesinto ExpandedCoarseTypes

CoarseType FineTypes

FACILITY CASINO, MUSEUM

GPE CITY, COUNTRY, STATE

INDIVIDUAL ACTOR, BASEBALL-PLAYER, M ILITARY-PERSON

ORGANIZATION COMPANY, UNIVERSITY, BASEBALL-TEAM

PHYSICAL LOCATION ISLAND, PLANET, RIVER

WORK ALBUM, SONG, BOOK

Table3: Examplesof CHAUCER-2's FineAnswerTypes.

In our TREC2007work, we have foundthatCHAUCER-
2'sapproachto AnswerTypeDetectionhingeson therecog-
nition of threecore elementsfrom eachquestion: (1) the
questionstem, (2) the predicateanswertypeterm, and(3)
thenominalanswertypeterm.

We de�ne a questionstemastheword (or phrase)which
signalsthebroadesttypeof informationsoughtby theques-
tion. With mostinterrogatives,the questionstemis equiv-
alent to a WH-word (e.g. who, what how) or a WH-phrase
(e.g.howmany, whatbookandcanbeextractedheuristically
from thetext of a question.2 We considera question'spred-
icateanswertypeterm(or predicateATT) to beany verbal
predicate(or predicatenominal)which exhibits a semantic
dependency with a questionstem. For example,in a ques-
tion like “Whatcivilization built thepyramidsthat towered
over theNile River?”, thewordsbuilt andtoweredareboth
predicates,but only thepredicatebuilt hasselectstheques-
tion stemWhatnationasanargument.In contrast,wede�ne
thenominalanswertypeterm(or nominalATT) asthenoun
phrase(NP) in a questionthatcanleadto theinferenceof a
question'sexpectedanswertype(EAT). For example,in the
questionsWhatcountry is Ahmadinejadpresidentof? and
Whatis Jon Bon Jovi's profession?, we assumethat words
suchascountryandprofessioncanbe usedto infer an the
mostappropriateanswertypefor thesequestions.

In CHAUCER-2, recognitionof thequestionstem, predi-
cateATT, andnominalATT wereperformedusingaheuris-
tic basedmethodthatwastunedonacollectionof morethan
6000factoidquestionswhichhadbeenannotatedwith these
threecoreelements.

Evaluationresultsfor nominalATT detectionarelistedin
Table 4. CHAUCER-2 is leastaccurateon questionstems
thatneedno nominalATT, suchaswho, when, andwhere.
However, sincethesequestionsalreadyderive muchmean-
ing from their stems,the downstreamperformanceis not
signi�cantly damaged.On what questions,however, miss-
ing thenominalATT will almostalwayscausethe�nal an-
swersto beincorrect.Wefoundthatthemostcommoncause
for missing the nominal ATT occursin syntacticparsing
or while interpretingthe syntacticparsetree. For exam-
ple, syntacticparserswill often mis-parsequestion,“What
state-of-the-arttechniqueisbeingusedfor thenewestTMNT
movie?” without the useof high performancechunkingor

2We assumethatquestionstemof animperative questionslike
Namebooksthat Pamukhas written. correspondsto the initial
predicatewhich signalsboth that thestatementis a requestfor in-
formationandthetypeof informationthatthespeaker presumably
seeks.



collocationdetection.In this question,CHAUCER-2 incor-
rectly annotatesstateas the nominalATT insteadof tech-
nique.

QuestionStem Total Questions Accuracy

who/whom/whose 58 89.7
what/which 278 97.8

when 13 92.3
where 13 92.3
how 65 100
list 8 100

name 10 100
Total 445 96.9

Table4: NominalAnswerTypeTermDetectionResults,by
questionstem,onTREC2007Questions.

The overall answertype detectionaccuracy scoresfor
CHAUCER-2 are listed in Table 5. The �nal scoreis pri-
marily dueto thecombinederrorof theCoarse,Human,and
Locationclassi�ers.

Type TotalQuestions Accuracy

Coarse 445 90.6%

Human 154 90.3%

Location 59 88.1%

Fine 445 79.3%

Table 5: Answer Type DetectionResultson TREC 2007
Questions.

DocumentRetrieval CHAUCER-2 takesadvantageof the
sametwo-tieredapproachto documentretrieval �rst intro-
duced in (?). Under this approach,output from a con-
servative entity-basedanswerextractionstrategy wasused
in order to re-rank the top 200 documentsretrieved from
CHAUCER-2's standardretrieval engine.

Our TREC 2007 approachfollows the samefour-step
approachthat was implementedfor our TREC 2006 sys-
tem. First, we useda standard(expanded)keyword query
to retrieve a total of 200 documentsfrom the AQUAINT-
2 and BLOG-06 corpora. The top 50 passageswere then
identi�ed using a passageretrieval engineand submitted
to CHAUCER-2's traditionalentity-basedanswerextraction
system.Passageswerethenre-rankedbasedon both(1) the
densitykeywordsextractedfrom thequestionfoundin each
passageand(2) thedistribution of entity typescorrespond-
ing to theexpectedanswertypeof thequestion.Theoriginal
setof 200 retrieved documentswere then re-ranked based
on thedistribution of the top-rankedpassages.As with our
TREC 2006system,only candidateanswersthat wereex-
tractedfrom the top 50 re-ranked documentswereconsid-
eredby downstreamAnswerSelectionandAnswerValida-
tion modules.

Answer Retrieval and Extraction
In thissection,we thethreedifferentanswerretrieval strate-
giesthatCHAUCER-2 leveragesin orderprovideanswersto
factoidquestions.

Extracting Answers fr om the Factoid Database
CHAUCER-2's �rst factoid Q/A strategy takes advan-
tageof the largerepositoryof factualinformationstoredin
its FactoidDatabasein orderto �nd answersto a �x edset
of questiontypes.Underthisapproach,aseriesof heuristics
are used to transform speci�c types of questions into
databasequeriesdesignedto retrieve speci�c information
from the FactoidDatabase. For example,givena question
like (Q282.2)What is Pamuk's year of birth?, heuristics
employed by CHAUCER-2 will retrieve the BIRTH-YEAR
�eld associatedwith a record with a NAME label of Pa-
muk. While we were encouragedby the precisionof this
approach,this strategy ultimately was limited in termsof
the coverageand precisionof the mappingheuristicswe
employed to convert questionsinto databasequeries. In
futurework, we planto explorea multi-tieredclassi�cation
approach– similar to theonewehaveemployedfor Answer
TypeDetection– in orderto directlymapbetweenquestions
andindividual �elds storedin theFactoidDatabase.

Pattern-basedAnswer Extraction Previous versionsof
LCC's question-answeringsystems(?; ?) havesuccessfully
usedlibrariesof hand-craftedpatternsin orderto retrieve –
and extract – candidateanswersfrom collectionsof texts.
Despitetheir promise(and their precision),pattern-based
approacheshave facedthree signi�cant challengeswhich
have ultimately limited their recall. First, in orderto beef-
fective, pattern-basedsystemsmust include large libraries
of patternswhich accountfor a signi�cant portion of the
different types of questionsthat userswill ask. Second,
pattern-basedsystemsalsoneedto have accessto accurate
heuristicswhichwill mapdifferenttypesof questionsto the
classesof patternswhich can be usedto extract answers.
Finally, pattern-basedsystemsneedto be usedin conjunc-
tion with high-recalldocumentretrieval engines:if the rel-
evant text snippetsaren't retrieved, pattern-basedsystems
will not be ableto returnanswers.In orderto counterthis
third challenge,CHAUCER-2 leveragesa new index annota-
tion framework whichmakesit possibleto retrieveall of the
text snippetsmatchedby a pattern-based(or variabilized)
query– without having to retrieve documentsusing a tra-
ditional keyword-basedquery. CHAUCER-2's index anno-
tation framework (basedon work �rst doneby (?) for an
informationextractionapplication)which makesit possible
to extractall of thetext passagesmatchinganextractionpat-
ternin atext collectionwithouthaving to retrievedocuments
throughan informationretrieval engine.Following (?), we
developedour own retrieval engine– which we refer to as
theneighborhoodretrieval engine– which canreturnshort
text snippetsin responseto variabilizedqueries. For ex-
ample,given a query like TYPE PERSONNAMEsuchas
ProperNoun(Head(NP)) , ourenginewill returntheset
of entitiesmarkedasTYPE PERSONNAMEwhicharefol-
lowedby thesequenceof thestringsuchasandany proper
nounwhichalsoheadsannounphrase(NP).

CHAUCER-2's neighborhood retrieval engine pro-
cesses variables like TYPE PERSONNAME or
ProperNoun(Head(NP)) by returning every pos-
siblestring in thecorpusthathasa matchingtype andthat



canbesubstitutedfor thevariableandstill satisfytheuser's
query. In orderto retrieve theextensionsof thesevariables
quickly andwithout having to post-processdocuments,we
againfollowed(Cafarellaetal. 2005)in creatinganew type
of augmentedinverted index, known as a neighborhood
index, which allows for the processingof thesequeries
with O(k) randomdisk seeksand O(k) disk reads,where
k is de�ned as the number of non-variable terms in a
query. In addition to keepinga list of the documentsin
which a term occurs– and a list of positionswhere the
term occurs,the neighborhoodindex also storesa list of
left-handand right-handneighborsat eachposition. The
neighborhoodcontainsthetokenstokentheleft andright of
the centertoken as well asany namedentitiesandphrase
chunksthat endjust beforethe token or start just after the
token. Neighborhoodsareadditionallyconstrainedto avoid
crossingsentenceboundaries.

Neighborhoodindicesarebuilt by loadingthedocuments
from a normal Luceneindex in order to producea sepa-
rateindex just to representneighborhoods.Moststopwords
areindexedbecausethey canbeimportantfor certainquery
types, although queriesinvolving stop words take much
longerto executethanotherqueries.To reducethe sizeof
theindex, commonwordsarestoredin a dictionaryandthe
index contains1- or 2-bytepointerinto thedictionary. Less
commonwordsarestoredverbatimin the index. Whende-
terminingwhichentitiesandphrasechunksareadjacentto a
giventoken,sometokensareskipped.Thesetokensinclude
articles,theword ”who”, quotationmarks,andparenthesis.
Skippingover thesetokensdramaticallyincreasestherecall
of somequeries.These”noise” tokensarenotstopwordsin
thetraditionalsense;it is possiblyto includethesetokensin
a query, but their presencein a documentdoesnot prevent
neighborhoodsfrom beingfound.
Entity-based Answer Extraction As with the TREC
2006versionof CHAUCER, CHAUCER-2's entity-basedan-
swerextractionstrategy usesthedistributionof namedenti-
ties(recognizedbyLCC'sCICEROL ITE namedentityrecog-
nition system)in orderto identify candidateanswersto indi-
vidual questions.Underthis approach,passagescontaining
entity typesassociatedwith thequestion's expectedanswer
type are�rst retrieved from the setof documentsretrieved
by the system. Candidateanswersfound within eachpas-
sageare then extractedand re-ranked basedon the distri-
bution anddensityof questionkeywordsdiscoveredin each
passage.

While traditionalentity-basedQ/A strategieshave shown
muchpromisein previous TREC QA evaluations(?), they
often retrieve many spuriousanswerswhich can greatly
complicatethetasksof AnswerRankingandAnswerSelec-
tion. In our TREC 2007work, we hypothesizedthat if we
couldretrievecandidateanswersnot justbasedonthedistri-
butionof entity types– but in termsof speci�c conjunctions
of semanticfeaturesextractedfrom a question– we could
constrainthetotal numberof candidateanswersthatarere-
trievedfor a questionwithoutexperiencingany reductionin
overallprecision.

In ourexperiments,we investigatedhow � vedifferentse-

manticfeatures– basedon thedistribution of semanticde-
pendenciesin ancandidateanswer(asrecognizedby LCC's
PropBankandNomBankparsers)– couldbe usedin order
to enhancetheprecisionof a traditionalentity-basedanswer
extractionstrategy. These� ve featuresincludedthe pres-
enceof a semanticdependency found(1) betweenanentity
in the answer(Entans ) correspondingto the question's ex-
pectedanswertypeandapredicate(Predans ) corresponding
to a thequestion's predicateanswertypeterm,(2) between
theEntans andany otherpredicatein thecandidateanswer,
(3) betweenthePredans andany otherargumentin thecan-
didateanswer, (4) betweenanargumentin thecandidatean-
swer(Ar gans ) correspondingto anargumentfrom theques-
tion andany otherpredicatein theanswer, and(5) between
theArgans andthePredans . (A summaryof the10different
strategiesarepresentedin Table6.3)

Strategy Ent Ent-Pred Ent-� � -Pred Arg-� Arg-Pred

1 X � � � � �

2 X X � � � �

3 X � X � � �

4 X � � X � �

5 X � � � X �

6 X � � � � X

7 X � X X � �

8 X � X � X �

9 X � � X X �

10 X X X � � �

Table 6: Query Strategies usedby CHAUCER-2's Entity-
BasedQ/A Strategy.

While Strategy 1 in (Table6 correspondsto the default
entity-basedQ/A strategy, Strategies2 through10 represent
contextsin whichtheretrievedcandidateanswersaresubject
to additionalconstraints.For example,Strategy 8 requires
that all retrieved candidateanswersmust meettwo condi-
tions. First, any valid candidateanswermustincludeanen-
tity thatcorrespondsto theexpectedanswertypeof theques-
tion that also participatesin a predicate-argumentrelation
with a predicate.In addition,theanswermustalsoinclude
aninstanceof anargumentfrom thequestionwhich partic-
ipatesin a predicate-argumentrelationshipwith a predicate
aswell.

In ourearlywork, we foundthatmostof thequerystrate-
gieslistedin Table6 returnedfew (if any) candidateanswers
for most questions;however, their precision(when parser
errorswheretaken into account)in many casesapproached
100%. In order to capitalizeon thesehigh-precision,low-
recall strategies,we impelmentedthese10 strategiesasan-
othercascade,whichrangedfrom themostrestrictivestrate-
gies(i.e. the oneswhich includedthe mostconstraints)to
the leastrestrictive (i.e. Strategy 1, the traditional entity-
basedstrategy). Althoughweconsideredcandidateanswers
retrievedby all 10strategiesduringAnswerRankingandAn-
swerValidation, candidateanswerswereassigneda weight

3We selectedthese10 strategiesto experimentwith duringour
preparationsfor TREC2007.Weplanto exploretheotherpossible
combinationsof featuresin futurework.



correspondingto thequerystrategy (orstrategies)whichwas
responsiblefor retrieving them;answersretrievedby more
restrictive strategiesreceivedhigherweightsthanthosere-
trievedby lessrestrictivestrategies.

Answer Ranking
Following AnswerExtraction, CHAUCER usesa Maximum
Entropy-basedre-ranker (similar to (?)) in order to com-
pile answersfrom eachof the six answerextractionstrate-
giesinto a singlerankedlist. This re-ranker wastrainedon
thetop tenanswersreturnedby eachof CHAUCER's answer
extractionstrategiesfor eachof thequestionstakenfrom the
TREC2004andTREC2005datasets.(Answerswerekeyed
automaticallyusing“gold” answerpatternsmadeavailable
by theTRECorganizersandotherparticipatingteams.)Five
setsof featureswereusedin this re-ranker: (1) thestrategy
usedto extracttheanswer, (2) theEAT of theoriginal ques-
tion, (3) the entity type associatedwith the exact answer,
(4) the redundancy of theansweracrossthe top-rankedan-
swers,and(5) thecon�denceassignedto theanswerby each
answerextractionstrategy.

Answer Selection
Oncea rankingof candidateanswersis performed,the top
25 answerswerethensentto an AnswerSelectionmodule
which leveragesLCC's state-of-the-arttextual entailment
systemin order to identify the answerwhich bestapprox-
imatesthesemanticcontentof theoriginal question.Popu-
larizedby therecentPASCAL RecognizingTextual Entail-
ment(RTE) Challenges(?), textualentailmentsystemsseek
to identify whetherthemeaningof a hypothesiscanberea-
sonablyinferredfrom themeaningof a correspondingtext.
While theRTE Challengeshavefocusedto-dateonly on the
computationof entailmentrelationshipsbetweensentence-
lengthtexts andhypotheses,our recentwork (?) hasshown
thatcurrentsystemsfor recognizingTE canbeleveragedto
accuratelyidentify entailmentrelationshipsbetweenques-
tionsandanswers– or evenquestionsandotherquestions.

CHAUCER usestheentailmentsystemdescribedin (?) in
orderto estimatethelikelihoodthataquestionentailseither
(1) a candidateanswerextractedby oneof CHAUCER's six
answerextractionstrategiesor (2) apredictivequestiongen-
eratedby thePredictiveQuestionGeneration module.Fol-
lowing (?), we �rst �ltered all candidateanswersthatwere
notentailedby theoriginalquestions.Theremainingcandi-
dateanswers(includingany remainingpredictive question-
answerpairs)werere-rankedbasedon the entailmentcon-
�dence outputby the RTE system.The top-rankedanswer
wasthenreturnedasoursubmittedanswer.

4. List Questions
This section describes the multiple strategies that
CHAUCER-2 uses in order to provide answers to list
questions.In order to maximizeboth precisionandrecall
of the list answersCHAUCER-2 returns,we developedtwo
distinct types of answer-�nding strategies: (i) strategies
that �nd all globally correct answersfrom an external
knowledgesource,thenchoosethe supportedanswersthat

actuallyexist in thetext, and(ii) strategiesthat�nd possible
answersin thetext andretainonly thosethatpasssomeform
of validation. The Type (i) strategieswe have investigated
in ourTREC2007work includean(1) AuthoritativeSource
strategy, a (2) Wikipedia list strategy, and a (3) Lexicon
strategy. We only investigatedoneType (ii) strategiesthis
year, however: aWebCountstrategy �rst introducedin (?).

Figure2: WikipediaInfobox for “St. Peter'sBasilica”

Authoritati veSourceList Strategy Similar to theStruc-
tured Data strategy implementedfor factoid questions,
CHAUCER-2's Authoritative Source strategy uses the
sources of semi-structureddata stored in the Factoid
Databasein orderto provide answersto list questions.Al-
thoughthe Factoid Databasewas usedprimarily usedfor
answeringfactoid questions,somelist �elds (suchas the
types of lists found on sites like imdb.org or stored in
theHTML table“infoboxes” foundon many wikipedia.org
pages)wereextractedheuristicallyandstoredin theFactoid
Databaseprior to theTREC2007evaluation.As with fac-
toid questions,heuristicsareusedto mapcommonquestion
typesto theparticular�elds (andsources)which would be
mostlikely containa correctanswer. In addition,we found
that thethe thenominalATT (asrecognizedby theAnswer
TypeDetectionmodulecouldoftenbeusedto identify a�eld
whichcouldcontaina relevantsetof answers.For example,
givena questionlike (278.5)Whatarchitectswere involved
in building St. Peter's?, we found that searchingthe Fac-



toid Databasefor thetermarchitectreturnedapointerto the
“infobox” includedonthewikipedia.org pagefor St.Peter's
Basilicawhich mentionsthefour architectswho workedon
the basilica(e.g. Donato Bramante, Antonio da Sangallo
theYounger, Michelangelo,andGiacomodella Porta. (See
Figure2 for anexampleof a “infobox”.)

Wikipedia List and Table Strategy Our secondstrategy
soughtto leveragelists and tablesmentionedon relevant
Wikipedia4 pagesin orderto identify candidateanswersfor
list questions.Underthis strategy, keywordsextractedfrom
boththequestionandtheseriestargetwereusedto retrievea
setof relevantpagesfrom Wikipedia. Heuristicsusedto ex-
tractlists(andto “unroll” HTML) tableswerethenused– in
conjunctionwith entityinformationavailablefrom CICERO-
L ITE in orderto identify setsof multiplecandidateanswers.
For example,thequestion(217.6)Whatare titles of albums
featuringJay-Z?hasanswersthatcanbefoundin thetable
onWikipedia's “Jay-Z discography”page.5

Lexicon List Strategy In a third strategy, we usedthe
collection of more than 800 different lexicons includedin
LCC'sCICEROL ITE in orderto provideanswersto list ques-
tions. As with the previous two strategies,heuristicswere
usedagainto mapbetweenselectedtypesof questiontypes
(andor questionkeywords)andeachof the lexiconsavail-
able to CHAUCER-2.CHAUCER-2 utilizes the lexicon list
strategy if three conditionsare met: (1) a lexicon exists
thatmatchesthenominalATT, (2) thenominalATT is suf-
�ciently far down the answertype hierarchy(by default, 2
nodes)from a coarsetype, and (3) thereis a propernoun
(which becomesa mandatorykeyword) after the nominal
ATT in thequestion.Thismeansthataquestionslike“What
Republicansenatorssupportedthenomination?” and“What
personshasKrugmancriticizedin hisop-edcolumns?” will
not usethe lexicon strategy (dueto conditions(3) and(2),
respectively),while aquestionlike“Whatmusicalsdid Kurt
Weill write?” will.

Web Count List Strategy As with our TREC 2006sys-
tem,CHAUCER-2 alsoutilizesa methodbasedon termfre-
quency counts(obtainedfrom searchengineslike Google)
in order to determinehow muchof an associatetherewas
betweena candidateanswerandboth the seriestarget and
answertype term. Thesetwo scoreswere then combined
in orderto rankeachindividual candidateanswer;answers
above a thresholdwereincludedin thesetof candidatean-
swersconsideredby thesystem.

Strategy Selection As with factoid questions,we again
casttheproblemof selectinganswersfrom multiple strate-
gies asa cascade:list answerswere considered�rst from
the (1) AuthoritativeSource strategy, followed by answers
from the(2) WikipediaList andTablestrategy, the (3) Lex-
icon List strategy, and(4) theWebCountstrategy. Answers
wereaddedto thelist until therewereamaximumnumberof
answers– or until therewereno answerswith a con�dence
level abovea �x edthresholdto return.

4http://www.wikipedia.org
5http://en.wikipedia.org/wiki/Jay-Z discography

5. Answering “Other” Questions
In this section,we describeour approachto answeringthe
“other” questionsincludedwith eachquestionin theTREC
2007QA Main Task.

As with ourTREC2006submission,CHAUCER-2 begins
theprocessof �nding answersto “other” questionsby �rst
computingtwo typesof automatictopic representations,in-
cluding: (1) weightedlists of topic relevanttermsknown as
TopicSignatures(?) (TS1) and(2)acorrespondingweighted
list of topic relevant relations,known as EnhancedTopic
Signatures(?) (TS2). (As describedin (?), both topic rep-
resentationsarecomputedfrom the top 100 documentsre-
trieved from the AQUAINT-2/BLOG-06corpususingkey-
wordsextractedfrom theseriestarget– andall of theprevi-
ousquestionscontainedin thequestionseries.)

NuggetExtraction
Oncesetsof TS1 termsandTS2 relationshave beencom-
puted,CHAUCER-2 retrieves the top 500 documentsfrom
the AQUAINT-2/BLOG-06 corpuswhich contain at least
onekeyword from the seriestarget. Passagesare thenex-
tractedandranked basedon the top 25 most topical terms
and relations. The top 500 passagesretrieved using this
methodarethensplit into individual clausesusingthesen-
tencedecompositiontechniquesintroducedin (?) andthen
weremadeavailableto thefollowing four nuggetextraction
techniques.

“W eb Words” Nugget Extraction Following an ap-
proachproposedby (?), weusedthetop50mostfrequently-
occurringnon-stopwords found in the �rst 100 pagesre-
trieved from Google containingthe seriestarget in order
to ranksentencesretrievedfrom theAQUAINT-2/BLOG-06
corpus.Top-scoringsentenceswerethensentto anAnswer
Selectionmoduleto becombinedwith outputfrom theother
nuggetextractiontechniques.

Topic-Based Nugget Extraction Following work done
by (?) for question-focusedsummarization,weusedweights
associatedwith TS1 termsandTS2 relationsto computea
compositetopic score for eachsentencein thesetof docu-
mentsretrievedfor a target.Sentenceswerere-rankedbased
on their topic score beforebeingsubmittedto the Answer
Selectionmodule.

Soft Pattern-Based Nugget Extraction As with our
TREC 2006 submission,we againexperimentedwith us-
ing theprobabilisticsoftmatchingtechniques�rst described
in (?) in orderto identify additionalpatternsthat could be
usedto extractnuggetsfor a particulartarget type. we fol-
lowed(?) in developinga bigramsoft patternmodelin or-
der to identify potentialmatchesbetweena setof training
sentencesandeachof thesentencesextractedfor a particu-
lar target. Training sentenceswerederived for eachtarget
typefrom two differentsources:(1) thecollectionof “gold”
nuggetsidenti�ed for theTREC2005“otherquestions”and
acollectionof 5,000biographies,descriptions,andencyclo-
pediaarticlesthat weredownloadedfrom the collectionof
“authoritativesources”usedto populateCHAUCER-2's fac-
toid database.



Headline Extraction In additionto nuggetsretrievedus-
ing thepreviousthreestrategies,CHAUCER-2 alsoretrieves
all of thedocumentheadlineswhich containboththeseries
targetandat leastoneTS1 termor TS2 relation. While not
everyseriestargetappearedin aheadlineof adocumentcon-
tainedin the AQUAINT-2 collection,we found that head-
lines often containeda succinct,topical statementthatwas
not unlike the“gold standard”nuggetsreportedasthekeys
for “other” questions.Sinceheadlinesappearedto provide
consistentlygood information for “other” questions,they
werenot submittedto theAnswerSelectionmodule,but ap-
pendedto thetopof eachsubmittedsetof nuggets.

Answer Combination
In a departurefrom the contentmodelingapproachintro-
ducedin (?), weusedasimplecombinationmethodto com-
bine (andrank) candidatenuggetsfor submission.Follow-
ing work doneby (?) for the DUC multi-documentsum-
marizationevaluations,candidatenuggetswereassigneda
compositescorebasedon thedensityof TS1 termsandTS2
relationsas well as the individual rank that they were as-
signedby eachindividual nuggetextractiontechnique.All
nuggetswhichreceivedascoreabovea�x edthresholdwere
returnedaspartof ourof�cial submission.

6. Evaluation Results
Table7 presentsa summaryof CHAUCER-2's performance
on theTREC2007QA Main Task.

Task EvaluationMetric CHAUCER-2

FactoidQ/A Accuracy 56.1%

List Q/A F� 1 32.4%

ªOtherºQ/A F� 3 26.1%

SeriesScore Aggregate 35.8%

Table7: Summaryof TREC2007QA Main TrackResults.

A detailedbreakdown of theresultsfrom theFactoidQ/A
taskis presentedin Table8.

Judgment Percent

Wrong 37.5%
Unsupported 2.7%
Inexact 4.7%
Locally Correct 1.2%
GloballyRight 53.8%

Table8: TREC2007FactoidQ/A Results

TREC2007markedthe�rst yearwherewe madea con-
centratedeffort to developacoherentstrategy for answering
list questions.Webelieveour resultsto beencouraging:our
TREC 2007resultsmorethandoubledour TREC 2006re-
sultsin termsof recall,precision,andF-measure(F� 1).

Metric TREC2007

Recall 0.361
Precision 0.412
F(� =1) 0.324

Table9: TREC2007List Q/A Results

Finally, Table10showsourprecision,recall,andF-Score
for “other” questions.

Metric TREC2007

Recall 0.288
Precision 0.2501
F(� =3) 0.261

Table10: TREC2006OtherQ/A Results

6. Conclusions
This paperdescribesCHAUCER-2, the mostrecentversion
of LanguageComputerCorporation'sCHAUCER line of au-
tomatic question-answeringsystems. Developed for the
2007 TREC QA Track Main Task, CHAUCER-2 was de-
signedto explore how a new, semantically-richframework
for informationretrieval could be usedto boostthe overall
performanceof theanswerextractionandanswerselection
componentsof anend-to-endquestion-answeringsystem.

First,unlike thekeyword-basedretrieval systemsusedby
LCC'spreviousQ/A systems(?; ?), CHAUCER-2 employed
a novel indexing and retrieval enginewhich supporteda
wide rangeof semantically-richqueries,including queries
basedonsemantictypesrecognizedby LCC's CICEROL ITE
namedentity recognitionsystemas well as semanticde-
pendenciesidenti�ed by LCC'sPropBank-,NomBank-,and
FrameNet-basedsemanticparsers. We found that support
for thesenew typesof queriesdramaticallyenhancedthe
performanceof theretrieval componentsusedin CHAUCER-
2 while signi�cantly reducingthenumberof candidatean-
swersthat had to be consideredby CHAUCER-2s Answer
RankingandAnswerValidationmodules.

In addition to supporting multiple query types,
CHAUCER-2 also leveraged a variant of the
Bindings Engine (BE) �rst proposed by (?;
?) in order to retrieve of all of the text snippetsmatched
by a query without having to retrieve documentsusing a
keyword-basedquery. We foundthatuseof this framework
greatly both enhancedthe ef�ciency and the recall of
traditionalpattern-basedapproachesto Q/A.

Finally, CHAUCER-2 incorporateda new, multi-tiered
AnswerType Detection(ATD) modulewhich reducedthe
numberof expectedanswertypes(EATs) consideredby the
systemfor factoidor list questions,while maintainingthe
samehighlevelsof precisionexhibitedby previoussystems.
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